۱۳۸۷ آبان ۱۸, شنبه
آئرودینامیک
کار با مولتی متر
دانستنیهای بمب اتم
طرز کار فیبر نوری
هرجا که صحبت از سیستم های جدید مخابراتی، سیستم های تلویزیون کابلی و اینترنت باشد، در مورد فیبر نوری هم چیزهایی می شنوید. فیبرهای نوری از شیشه شفاف و خالص ساخته می شوند و با ضخامتی به نازکی یک تار موی انسان، می توانند اطلاعات دیجیتال را در فواصل دور انتقال دهند. از آنها همچنین برای عکسبرداری پزشکی و معاینه های فنی در مهندسی مکانیک استفاده می شود. یک رشته فیبر نوری در این مطلب به مطالعه این که این فیبرهای نوری چگونه نور را منتقل می کنند و نیز درمورد روش های عجیب ساخت آنها بحث می کنیم!
● فیبرنوری چیست؟
فیبرهای نوری رشته های بلند و نازکی از شیشه بسیار خالصند که ضخامتی در حدود قطر موی انسان دارند. آنها در بسته هایی به نام کابلهای نوری کنار هم قرار داده می شوند و برای انتقال سیگنالهای نوری در فواصل دور مورد استفاده قرار می گیرند. اگر با دقت به یک رشته فیبر نوری نگاه کنید، می بینید که از قسمتهای زیر ساخته شده: هسته : هسته بخش مرکزی فیبر است که از شیشه ساخته شده و نور در این قسمت سیر می کند.
● قسمتهای مختلف یک رشته فیبر نوری
▪ لایه روکش :
واسطه شفافی که هسته مرکزی فیبر نوری را احاطه می کند وباعث انعکاس نور به داخل هسته می شود.
▪ روکش محافظ :
روکشی پلاستیکی که فیبر نوری در برابر رطوبت و آسیب دیدن محافظت می کند.صدها یا هزاران عدد از این رشته های فیبر نوری به صورت بسته ای در کنار هم قرار داده می شوند که به آن کابل نوری گویند.این دسته از رشته های فیبر نوری با یک پوشش خارجی موسوم به ژاکت یا غلاف محافظت می شوند.فیبرهای نوری دو نوعند:
1) فیبرهای نوری تک وجهی:
این نوع از فیبرها هسته های کوچکی دارند (قطری در حدود۵/۳ ،x۱۰ (۴-) inch یا ۹ میکرون) و می توانند نور لیزر مادون قرمز (با طول موج ۱۳۰۰ تا ۱۵۵۰ نانومتر) را درون خود هدایت کنند.
۲) فیبرهای نوری چند وجهی :
این نوع از فیبرها هسته های بزرگتری دارند (قطری در حدود inch (۳-) ۱۰x ۵/۲ یا ۶۲/۵ میکرون) و نور مادون قرمز گسیل شده از دیودهای نوری موسوم به LEDها را (با طول موج ۸۵۰ تا ۱۳۰۰ نانومتر) درون خود هدایت می کنند. برخی از فیبرهای نوری از پلاستیک ساخته می شوند. این فیبرها هسته بزرگی (با قطر ۴ صدم inch یا یک میلیمتر) دارند و نور مریی قرمزی را که از LEDها گسیل می شود (و طول موجی برابر با ۶۵۰ نانومتر دارد) هدایت می کنند. بیایید ببینیم طرز کار فیبر نوری چیست.
یک فیبر نوری چگونه نور را هدایت می کند؟
فرض کنید می خواهید یک باریکه نور را به طور مستقیم و در امتداد یک کریدور بتابانید. نور به راحتی در خطوط راست سیر می کند و مشکلی ازین جهت نیست. حال اگر کریدور مستقیم نباشد و در طول خود خمیدگی داشته باشد چگونه نور را به انتهای آن می رسانید؟ برای این منظور می توانید از یک آینه استفاده کنید که در محل خمیدگی راهرو قرار می گیرد و نور را در جهت مناسب منحرف می کند. اگر راهرو خیلی پیچ در پیچ باشد و خمهای زیادی داشته باشد چه؟ می توانید دیوارها را با آینه بپوشانید و نور را به دام بیندازید به طوریکه در طول راهرو از یک گوشه به گوشه دیگر بپرد. این دقیقاً همان چیزی است که در یک فیبرنوری اتفاق می افتد. نور در یک کابل فیبرنوری، بر اساس قاعده ای موسوم به بازتابش داخلی، مرتباً به وسیله دیواره آینه پوش لایه ای که هسته را فراگرفته، به این سو و آن سو پرش می کند و در طول هسته پیش می رود.
● تصویری از بازتابش کلی نور در یک فیبر نوری
از آنجا که لایه آینه پوش اطراف هسته هیچ نوری را جذب نمی کند، موج نور می تواند فواصل طولانی را طی کند. به هر حال، برخی از سیگنالهای نوری در حین حرکت در طول فیبر، ضعیف می شوند که علت عمده آن وجود برخی ناخالصی ها داخل شیشه است. میزان ضعیف شدن سیگنال به درجه خلوص شیشه به کار رفته در داخل فیبر و نیز طول موج نوری که درون فیبر سیر می کند بستگی دارد (به عنوان مثال
۸۵۰ نانومتر = ۶۰ تا ۷۵ درصد در هر یک کیلومتر
۱۳۰۰ نانومتر = ۵۰ تا ۶۰ درصد در هر یک کیلومتر
۱۵۵۰ نانومتر = بیش از ۵۰ درصد در هر یک کیلومتر).
برخی از فیبرهای نوری هم هستند که سیگنال در داخل آنها خیلی کم تضعیف می شود. (کمتر از ۱۰ درصد در هر یک کیلومتر برای ۱۵۵۰ نانومتر). سیستم ارتباط به وسیله فیبرنوری برای پی بردن به اینکه فیبرهای نوری چگونه در سیستم های ارتباطی مورد استفاده قرار می گیرند، اجازه دهید نگاهی بیاندازیم به فیلم یا سندی که مربوط به جنگ جهانی دوم است. دو کشتی نیروی دریایی را درنظر بگیرید که از کنار یکدیگر عبور می کنند و لازم است باهم ارتباط برقرار کنند درحالی که امکان استفاده از رادیو وجود ندارد و یا دریا طوفانی است. کاپیتان یکی از کشتی ها پیامی را برای یک ملوان که روی عرشه است می فرستد. ملوان آن پیام را به کد مورس ترجمه می کند و از نورافکنی ویژه که یک پنجره کرکره جلو آن است برای ارسال پیام به کشتی مقابل استفاده می کند. ملوانی که در کشتی مقابل است این پیام مورس را می گیرد، ترجمه می کند و به کاپیتان می دهد. (ملوان کشتی دوم عکس عملی را انجام می دهد که ملوان کشتی اول انجام داد.)حالا فرض کنید این دو کشتی هر یک در گوشه ای از اقیانوسند و هزاران مایل فاصله دارند و در فاصله بین آنها یک سیستم ارتباطی فیبرنوری وجود دارد.
خازنهای فشار ضعیف
تصفیۀ روغن ترانسفورماتور
راکتور هستهای
● تاریخچه
اولین انرژی کنترل شده ناشی از شکافت هسته در دسامبر ۱۹۴۲ بدست آمد. با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی ، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هستهای ، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هستهای فعال بود.
● ساختمان راکتور
با وجود تنوع در راکتورها ، تقریبا همه آنها از اجزای یکسانی تشکیل شدهاند. این اجزا شامل سوخت ، پوشش برای سوخت ، کند کننده نوترونهای حاصله از شکافت ، خنک کنندهای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت میباشد.
● سوخت هستهای
سوخت راکتورهای هستهای باید به گونهای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها بکار میروند. ۲۳۲Th ، ۲۳۳U ، ۲۳۵U ، ۲۳۸U ، ۲۳۹Pu . برخی از این نوکلئیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع میباشند. تفاوت بین سوخت یک خاصیت در دستهبندی راکتورها است.در کنار قابلیت شکافت ، سوخت بکار رفته در راکتور هستهای باید بتواند نیازهای دیگری را نیز تأمین کند. سوخت باید از نظر مکانیکی قوی ، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد. هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن ، ساخت راحت ، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایدههای سوخت است.
● غلاف سوخت راکتور
سوختهای هستهای مستقیما در داخل راکتور قرار داده نمیشوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار میگیرند. پوشش یا غلاف سوخت ، کند کننده و یا خنک کننده از آن جدا میسازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری میکند. همچنین این غلاف میتواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر همکنشهای هستهای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.
● مواد کند کننده نوترون
یک کند کننده مادهای است که برای کند یا حرارتی کردن نوترونهای سریع بکار میرود. هستههایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده میباشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبی پایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده ، چند ماده هستند که میتوان از آنها استفاده کرد. هیدروژن ، دوتریم ، بریلیوم و کربن چند نمونه از کند کنندهها میباشند. از آنجا که بریلیوم سمی است، این ماده خیلی کم به عنوان کند کننده در راکتور مورد استفاده قرار میگیرد. همچنین ایزوتوپهای هیدروژن ، به شکل آب و آب سنگین و کربن ، به شکل گرافیت به عنوان مواد کند کننده استفاده میشوند.
● خنک کنندهها
گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میلههای سوخت را ذوب کند. حرارتی که از سوخت گرفته میشود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت مؤثر باشد. همچنین پایداری شیمیایی و سطح مقطع جذب پایینتر از نوترون دو خاصیت عمده ماده خنک کننده است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیواکتیو شوند.از مایعات و گازها به عنوان خنک کننده استفاده شده است، مانند گازهای دی اکسید کربن و هلیوم. هلیوم ایدهآل است ولی پر هزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کنندههای مایع شامل آب ، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است خنک کننده ایدهآلی نیست.
● مواد کنترل کننده شکافت
برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع ، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست، ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.
● انواع راکتورها
راکتورها بر حسب نوع فرآیند شکافت به راکتورهای حرارتی ، ریع و میانی (واسطه) ، بر حسب مصرف سوخت به راکتورهای سوزاننده ، مبدل و زاینده ، بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی ، راکتورهای اورانیوم غنی شده با ۲۳۵U (راکتور مخلوطی Be) ، بر حسب خنک کننده به راکتورهای گاز (CO۲مایع (آب ، فلز) ، بر حسب فاز سوخت کند کنندهها به راکتورهای همگن ، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت ، تولید نوکلید و تحقیقاتی تقسیم میشوند.
● کاربردهای راکتورهای هستهای
راکتورها انواع مختلف دارند برخی از آنها در تحقیقات ، بعضی از آنها برای تولید رادیو ایزتوپهای پر انرژی برخی برای راندن کشتیها و برخی برای تولید برق بکار میروند.دوگروه اصلی راکتورهای هستهای بر اساس تقسیم بندی کاربرد آنها. راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هستهای پایه ، مطالعات کاربردی تجزیهای و تولید ایزوتوپها مورد استفاده قرار می گیرند.